CHAPTER 6 : Beyond elaticity : plasticity, yielding and ductility

6.1 Introduction and synopsis

The verb ‘to yield’ has two seemingly contradictory meanings. To yield under force is to submit
to it, to surrender. To yield a profit has a different, more comfortable connotation: to bear
fruit, to be useful. The yield strength, when speaking of a material, is the stress beyond which
it becomes plastic. The term is well chosen: yield and the plasticity that follows can be
profitable e it allows metals to be shaped, and it allows structures to tolerate impact and
absorb energy. But the unplanned yield of the span of a bridge, or of the wing spar of an
aircraft, or of the forks of your bicycle, spells disaster.

This chapter is about yield and plasticity. For that reason, it is mainly (but not wholly) about
metals: itis the plasticity of iron and steel that made them the structural materials on which the
Industrial Revolution was built, enabling the engineering achievements of the likes of Telford*
and Brunel? The dominance of metals in engineering, even today, derives from their ability to
be rolled, forged, drawn and stamped.

62 Strength, ductility, plastic work and hardness: definition
and measurement

Yield properties and ductility are measured using the standard tensile tests introduced
in Chapter 4, with the materials taken to failure. Figures 6.1€6.3 show the types of
stressestrain behaviour observed in different material classes. The yield stress or yield strength
Sy (or elastic limit Se) € units: MPa or MN/m?2 e requires careful definition. For metals,
the onset of plasticity is sometimes marked by a distinct kink in the stressestrain curve; if
not, we identify S, with the 0.2% proof stress € that is, the stress at which the stressestrain
curve for axial loading deviates by a permanent strain of 0.2% (this is the case shown in
Figure 6.1). The elastic limit or yield strength is the same in tension and compression. When
strained beyond the yield point, most metals work harden, causing the rising part of the
curve, In tension, a maximum stress € the tensile strength, St € is reached, followed by
localised deformation (necking) and fracture.

' Thomas Telford (1757e1834), Scottish engineer, brilliant proponent of the suspension bridge at a time
when its safety was a matter of debate. Telford may himself have had doubts e he was given to lengthy
prayer on the days that the suspension chains were scheduled to take the weight of the bridge. Most of his
bridges, however, still stand.

2 |Isambard Kingdom Brunel (1806e1859), perhaps the greatest engineer of the Industrial Revolution
(c. 1760e1860) in terms of design ability, personality, power of execution and sheer willingness
to take risks e the Great Eastern, for example, was five times larger than any previous ship ever
built. He took the view that ‘great things are not done by those who simply count the cost’. Brunel
was a short man and self-conscious about his height; he favoured tall top hats to make himself
look taller.
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For polymers, o, is identified as the stress at which the stress—strain curve becomes
markedly non-linear: typically, a strain of 1% (Figure 6.2). The behaviour beyond yield de-
pends on the temperature relative to the glass temperature Tg. Well below Tg, most polymers
arc brittle. As Ty is approached, plasticity becomes possible until, at about Tg, thermoplastics
exhibit cold drawing: large plastic extension at almost constant stress during which the
molecules are pulled into alignment with the direction of straining, followed by hardening and
fracture when alignment is complete. At still higher temperatures, thermoplastics become
viscous and can be moulded; thermosets become rubbery and finally decompose. The yield
strength oy of a polymer—matrix composite is also best defined by a set deviation from linear
elastic behaviour, typically 0.5%. Composites that contain aligned fibres (and this includes
natural composites like wood) are a little weaker (up to 30%) in compression than tension
because the fibres buckle on a small scale.

Ceramics and glasses are brittle at room temperature (Figure 6.3). They do have yield
strengths, but these are so enormously high that, in tension, they are never reached: the ma-
terials fracture first. Even in compression, ceramics and glasses crush before they yield. To
measure their yield strengths, special tests that suppress fracture are needed. We will return to
the fracture-controlled strength of ceramics in Chapter 8. For now, it is useful to have a
practical measure of the strength of ceramics to allow their comparison with other materials.
The measure used here is the compressive crushing strength, and since it is not a yield point but
is still the end of the elastic part of the stress—strain curve, we call it the elastic limit and give it
the symbol .

Returning then to ductile materials, the plastic strain, ey, is the permanent strain resulting
from plasticity; thus, it is the total strain g, minus the recoverable elastic part:

et = St~ 1 (6.1)

The ductility is a measure of how much plastic strain a material can tolerate. Tt is measured
in standard tensile tests by the elongation ef (the plastic tensile strain at fracture) expressed as a
percentage (Figures 6.1 and 6.2). Strictly speaking, ef is not a material property because it
depends on the sample dimensions — the values that are listed in handbooks and in the
Cambridge Engineering Selector software are for a standard test geometry — but it remains
useful as an indicator of the ability of a material to be deformed.

In Chapter 4, the area under the elastic part of the stress—strain curve was identified as the
elastic energy stored per unit volume (o2 /2E). Beyond the elastic limit, plastic work is done in
deforming a material permanently by yield or crushing. The increment of plastic work done for
a small permanent extension or compression dL under a force F, per unit volume V = A L,, is

FdL  F dL
Thus, the plastic work per unit volume at fracture is
Ef )
Wpf = L Gde{ (62)

which is just the area under the whole stress—strain curve (minus the elastic unloading at the
end). This is important in energy-absorbing applications, such as the crash boxes in the front of
cars or roadside crash barriers.



Tensile and compression tests are not always convenient: the component or sample is
destroyved. The hardness test (Figure 6.4) is a non-destructive test that avoids this problem. A
pyramidal diamond or a hardened steel ball is pressed into the surface of the material. This
leaves a tiny permanent indent, the width of which is measured with a microscope and can be
converted to a projected area A perpendicular to the load. The indent means that plasticity has

occurred, and the hardness H measures the resistance to plastic indentation. By the simplest
definition, hardness is defined as:

H - (6.3)
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Figure 6.4 The hardness test. The Vickers test uses a diamond pyramid; the Rockwell and Brinell tests
use a steel sphere, producing the indent shapes shown on the right.



In practice, corrections may also be made to convert the projected area A to the actual area
of contact between indenter and material — this is a small correction, as the indentations are
shallow compared to their width. The plastic region under the indenter is surrounded by
material that has not deformed, and this pushes inwards and constrains the plastic deforma-
tion so that H is larger than the (uniaxial) yield strength o, — in practice, it is about 3o,
Strength, as we have seen, is measured in units of MPa, and since H is also a force per unit area,
it would be logical to measure it in MPa too, but convention dictates otherwise in this case. A
commonly used scale, that of Vickers hardness (symbol H,), has units of kg/mm?, which is
equivalent to H in MPa divided by g (=9.81 m/s?, the acceleration due to gravity), with the
result that

=il (6.4)

The conversion between hardness scales and the corresponding approximate yield strength
are shown in Figure 6.5. The hardness test has the advantage of being non-destructive, so
strength can be measured without destroying the component, and it requires only a tiny
volume of material. But the information it provides is less accurate and less complete than the
tensile test, so it is not used to provide critical design data.
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Figure 6.5 Common hardness scales compared with the yield strength.



True stress and true strain The graphs of Figures 6.1-6.3 strictly show the nominal
stress—nominal strain responses; that is, the area and length used are the original values at the
start of the test. But once materials yield, they can change dimensions significantly. The true
stress, oy, takes account of the current dimensions, so in tension, for example (equation (4.1))

o= (6.5)

To relate this to the nominal stress, which we will refer to as &, we note that in plastic
deformation, the volume of the sample is conserved, for reasons discussed later in this chapter;
that is

Volume = A,L, = AL (6.6)

where A and L are the current area and length of the test sample, and were initially A, and L,.
Hence, the nominal stress is

F F{L, i
Returning to the definition of nominal strain, ¢, (equation (4.3))
3L L-1, L i
o= — (=) =1 6.8
w5 () (@) o
Combining with equations (6.5) and (6.7) gives the true stress as
;= au(l +¢,) (6.9)

True strain, g, is a bit more involved. An incremental change in length, dL, gives an in-
cremental strain relative to the current length L. To find the cumulative true strain, we
therefore integrate these increments over the full extension from L, to L, giving

Ldr L) ,
= — =In[—) =In(1 + ¢, (6.10
[T -(LO n(1 + ) )

To see how different the true and nominal quantities are in practice, let’s do an example.



The example shows that for the elastic regime and small plastic strains, the difference be-
tween nominal and true stresses and strains is negligible. This explains the effectiveness of
using nominal values to define key properties such as the yield stress. By the end of the tensile
test in a metal, the discrepancy between the two is typically 20%.

What about compressive true stress and strain? Now the cross-sectional area increases with
plastic deformation (to conserve volume). Equations (6.5) to (6.10) all hold, so long as care is
taken with the sign of the applied force F and the strain increments dL, which are negative.
Figure 6.6 shows nominal and true stress—strain curves superimposed, for both compression
testing and for the stable part of a tensile test up to the tensile strength. As observed in
Example 6.2, in tension, the true stress is higher than nominal, whereas for strain, the reverse is
true. In compression, nominal stress exceeds true, and again the reverse for strain. Figure 6.6
shows one benefit of true stress—strain: the curves are identical in shape for tension and
compression. The compressive side also extends to larger values of stress and strain, as the
instability of necking in tension is avoided. The true stress—strain behaviour is most useful for
metal forming, where plastic strains of the order of 50% or more are common. And some
forming processes use multiple passes, with several plastic deformations one after another. In
the Exercises at the end of the chapter, you can show that the total strain in this case can simply
be found by adding up the true strains, but this is not the case for nominal strains.
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Figure 6.6 Nominal and true stress—strain curves for a ductile metal, in tension and compression.

6.3 The big picture: charts for yield strength
Strength can be displayed on material property charts. Two are particularly useful: the
strength—density chart and the modulus—strength chart.

The strength—density chart Figure 6.7 shows the yield strength a,, or elastic limit 6, plotted
against density p. The range of strength for engineering materials, like that of the modulus,



spans about 6 decades: from less than 0.01 MPa for foams, used in packaging and energy-
absorbing systems, to 10* MPa for diamond, exploited in diamond tooling for machining
and as the indenter of the Vickers hardness test. Members of each family again cluster together
and can be enclosed in envelopes, each of which occupies a characteristic part of the chart.
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Figure 6.7 The strength—density property chart.

Comparison with the modulus—density chart (Figure 4.7) reveals some marked differences.
The modulus of a solid is a well-defined quantity with a narrow range of values. The strength is
not. The strength range for a given class of metals, such as stainless steels, can span a factor of 10
or more, while the spread in stiffness is at most 10%. Since density varies very little (Chapter 4),
the strength bubbles for metals are long and thin. The wide ranges for metals reflect the un-
derlying physics of yielding, and present designers with an opportunity for manipulation of the
strength by varying composition and process history. Both are discussed later in this chapter.

Polymers cluster together with strengths between 10 and 100 MPa, and the modulus and
strength vary by a similar amount for a given polymer. The composites carbon fibre-reinforced
polymer (CFRP) and glass fibre-reinforced polymer (GFRP) have strengths that lie between
those of polymers and ceramics, as we might expect since they are mixtures of the two. The
analysis of the strength of composites is not as straightforward as for modulus in Chapter 4,
though the same bounds (with strength replacing modulus) generally give realistic estimates.



The modulus—strength chart Figure 6.8 shows Young’s modulus, E, plotted against yield
strength, gy or elastic limit, G, This chart allows us to examine a useful material characteristic,
the yield strain, ¢,/E, meaning the strain at which the material ceases to be linearly elastic.
On log axes, contours of constant yield strain appear as a family of straight parallel lines, as
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shown in Figure 6.8. Engineering polymers have large yield strains, between 0.01 and 0.1; the
values for metals are at least a factor of 10 smaller. Composites and woods lie on the 0.01
contour, as good as the best metals. Elastomers, because of their exceptionally low moduli,
have values of ¢,/E in the range 1—10, much larger than any other class of material.

This chart has many other applications, notably, in selecting materials for springs, elastic
diaphragms, flexible couplings and snap-fit components. We explore these in Chapter 7.

6.4 D

Perfection: the ideal strength The bonds between atoms, like any other spring, have a
breaking point. Figure 6.9 shows a stress—strain curve for a single bond. Here an atom is
assumed to occupy a cube of side length a, (as in Chapter 4) so that a force F corresponds to a
stress F /a2, The force stretches the bond from its initial length a, to a new length a, giving
a strain (@ — a,)/a,. When discussing the modulus in Chapter 4, we focused on the initial,
linear part of this curve, with a slope equal to the modulus, E. Stretched farther, the curve
passes through a maximum and falls to zero as the atoms lose their interaction altogether. The
peak is the bond strength — if you pull harder than this, it will break. The same is true if you
shear it rather than pull it.
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Figure 6.9 The stress—strain curve for a single atomic bond (it is assumed that each atom occupies a
cube of side a,).

The distance over which inter-atomic forces act is small — a bond is broken if it is stretched
to more than about 10% of its original length. So the force needed to break a bond is roughly:

Sa,

F
10

(6.11)

where §, as before, is the bond stiffness. On this basis, the ideal strength of a solid should
therefore be roughly

oo dmx S E
ideal =7 27 T 1040 10

(¢}




remembering that E = S/a,, equation (4.26). Hence:

Oideal 1

E 10

(6.12)

This doesn’t allow for the curvature of the force—distance curve; more refined calculations
give a ratio of 1/15.

Figure 6.10 shows a,/E for metals, polymers and ceramics. None achieves the ideal value of
1/15; most don’t even come close. To understand why, we need to look at the microstructure
and imperfections in each material class.
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Figure 6.10 The ideal strength is predicted to be about £/15, where £ is Young's modulus. The
figure shows o, /E with a shaded band at the ideal strength.

Strength of polymers Figure 6.2 showed a range of stress—strain responses in polymers.
Recall first that in Chapter 4, the glass transition temperature Ty was defined, being the
temperature at which the inter-molecular hydrogen bonds melt. This is usually associated with
a marked drop in the material stiffness, depending on whether the polymer is amorphous,
semi-crystalline or cross-linked. Not surprisingly, the strength of a polymer also depends
strongly on whether the material is above or below the glass transition, and a number of
different failure mechanisms can occur.

At low temperatures, meaning below about 0.75 Tg, polymers are elastic—brittle, like ce-
ramics, and fail by propagation of a dominant flaw (see Chapter 8). Above this temperature,
they become plastic. When pulled in tension, the chains slide over each other, unravelling, so
that they become aligned with the direction of stretch, as in Figure 6.11(a), a process called
drawing. It is harder to start drawing than to keep it going, so the zone where it starts draws
down completely before propagating farther along the sample, leading to profiles like that
shown in the figure. The drawn material is stronger and stiffer than before, by a factor of about
8, giving drawn polymers exceptional properties, but because you can only draw fibres, or
sheet (by pulling in two directions at once), the geometries are limited.
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Figure 6.11 (a) Cold drawing — one of the mechanisms of deformation of thermoplastics. (b)
Crazing — local drawing across a crack. (c) Shear banding.

Many polymers, among them PE, PP and nylon, draw at room temperature. Others with
higher glass temperatures, such as PMMA, do not, although they draw well at higher
temperatures. At room temperature, they craze. Small crack-shaped regions within the poly-
mer draw down. Because the crack has a larger volume than the polymer that was there to start
with, the drawn material ends up as ligaments of aligned segments of molecules that link the
craze surfaces, as in Figure 6.11(b). Crazes scatter light, so their presence causes whitening,
easily visible when cheap plastic articles are bent. If stretching is continued, one or more crazes
develop into proper cracks, and the sample fractures.

While crazing limits ductility in tension, large plastic strains may still be possible in compression
by shear banding (Figure 6.11(c)). These bands allow blocks of material to either side of the
band to shear with respect to one another, without the material coming apart. Continued
compression causes the number of shear bands to increase, giving increased overall strain.

The upshot of all this is that polymers do have a strength that is not very far below their ideal
value (Figure 6.10). But we shouldn’t get too excited — their moduli are much lower than
metals to begin with, but it does mean that polymers are not so far below metals when
compared on strength (an observation you can make for yourself on the modulus—strength
property chart of Figure 6.8).

Crystalline imperfection: defects in metals and ceramics Crystals contain imperfections
of several kinds — Figure 6.12, All crystals contain point defects called vacancies, shown
in (a): sites at which an atom is missing. They play a key role in diffusion, creep and
sintering (Chapter 13), but we don’t need them for the rest of this chapter because they do not
influence strength.
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Figure 6.12 Defectsin crystals. (a) Vacancies — missing atoms. (b) Foreign (solute) atoms in interstitial
and substitutional sites. (¢) A dislocation — an extra half-plane of atoms. (d) Grain boundaries.

No crystal is made up of a single pure element. Other elements are always present at some
concentration — either as impurities inherited from the process by which the material was
made, or they are deliberately added, creating alloys: a material in which two or more elements
are mixed. If the foreign elements ‘dissolve’ and are spread out atomically in the crystal — like
salt in water — then we have a solid solution. Figure 6.12(b) shows both a substitutional solid
solution (the dissolved atoms replace those of the host) and an interstitial solid solution (the
dissolved atoms squeeze into the spaces or ‘interstices” between the host atoms). The dissolved
atoms or solute rarely have the same size as those of the host material, so they distort the
surrounding lattice. The red atoms here are substitutional solute, some bigger and some
smaller than those of the host; the cages of host atoms immediately surrounding them, shown
green, are distorted. Only the smallest atoms dissolve interstitially, like the black atoms in the
figure, but these too distort the surrounding lattice. So solute causes local distortion; this
distortion is one of the reasons that alloys are stronger than pure materials, as we shall see in a
moment.

Now to the key player, portrayed in Figure 6.12(c): the dislocation. We will see shortly how
these are responsible for making metals soft and ductile, well below their ideal strength.
‘Dislocated” means ‘out of joint’, and this is not a bad description of what is happening here.



The upper part of the crystal has one ‘half-plane” of atoms than the lower part — the region
around the bottom of this half-plane is a dislocation. They are actually line defects, extending
perpendicular to the view shown in the figure. Dislocations distort the lattice — here the green
atoms are the most distorted — and because of this, they have elastic energy associated with
them. If they cost energy, why are they there? To grow a perfect crystal just one cubic centi-
metre in volume from a liquid or vapour, about 10** atoms have to find their proper sites on
the perfect lattice, and the chance of this happening is just too small. Even with the greatest
care in assembling them, all crystals contain vacancies and dislocations.

Most crystalline solids are polycrystalline, made up of very many tiny crystals, or grains.
Figure 6.12(d) shows three perfect, but differently oriented, grains meeting, which leads to
interfaces between the grains where the packing is irregular. These planar defects are called
grain boundaries. In this sketch, the atoms of the three crystals have been given different
colours to distinguish their packing orientations, but they are all the same atoms. In reality,
grain boundaries form in pure materials (when all the atoms are the same) and in alloys (when
the mixture of atoms in one grain may differ in chemical composition from those of the next).

So the outward perfection of the steel of a precision machine tool, or of the polished case of a
gold watch, is an illusion: both metals are full of defects of the types shown in Figure 6.12.
Between them, they explain diffusion of atoms in solids, and the microstructure-sensitive
properties: strength, ductility, electrical resistance, thermal conductivity and much more. At
the heart of metal alloying and processing is the direct manipulation of these defects to control
properties — in this chapter, we learn how strength depends on microstructure; in Chapter 19
and Guided Learning Unit 2, we add the context of processing.

So defects in crystals are influential. For the rest of this section, we focus on dislocations, as
these control the plastic behaviour of metals. First we need to understand them to explain why
the strength of metals is below ideal (Figure 6.10), and then in Section 6.5, we address how
strength is increased by forcing dislocations to interact with the other defects.

Ceramics can also deform plastically — but only if they are very hot (and generally they also
need to be in compression). But their tensile strength shown in Figure 6.10 is also well below
yield. To explain this, we need fracture mechanics, and a different type of defect: cracks.
Chapter 8 is where we will tackle fracture.

Dislocations and plastic floww Recall that the strength of a perfect crystal computed from
inter-atomic forces gives an ‘ideal strength’ around E/15 (where E is the modulus). In reality,
the strengths of engineering alloys are nothing like this big; often they are barely 1% of it. This
was a mystery until the 1930s when an Englishman, G. I. Taylor®, and a Hungarian, Egon
Orowan”, realized that a ‘dislocated’ crystal could deform at stresses far below the ideal. So
what 1s a dislocation, and how does it enable deformation?

w

Geoffrey (G. 1) Taylor (1886—1975), known for his many fundamental contributions to aerodynamics,
hydrodynamics and to the structure and plasticity of metals — it was he, with Egon Orowan, who realised
that the ductility of metals implied the presence of dislocations. One of the greatest of contributors to
theoretical mechanics and hydrodynamics of the 20th century, he was also a supremely practical man — a
sailor himself, he invented (among other things) the anchor used by the Royal Navy.

Egon Orowan (1901—-1989), Hungarian/US physicist and metallurgist, who, with G. I. Taylor, realised that
the plasticity of crystals could be understood as the motion of dislocations. In his later years, he sought to
apply these ideas to the movement of fault lines during earthquakes.

IS



Figure 6.13(a) shows how to make a dislocation. Imagine that the crystal is cut along a
horizontal atomic plane up to the line shown as | — 1, and the top part above the cut is then
slipped across the bottom part by one full atom spacing. Then most of the atoms either side of
the cut can be reattached across the slip plane, except at the very end of the cut, where there is a
misfit in the atom configuration, as shown in Figure 6.13(b) for a simple cubic lattice packing.
The problem is that there is now effectively an extra half-plane of atoms in the top part of the
crystal, with its lower edge along the | — L line. This is the dislocation line — the line
separating the part of the plane that has slipped from the part that has not. This particular
configuration is called an edge dislocation because it is formed by the edge of the extra half-
plane, represented by the symbol L.

Slip vector

Extra half plane Slip vector Extra half plane

Edge
dislocation
line

area

Figure 6.13 (a) Making a dislocation by cutting, slipping and rejoining bonds across a slip plane. The
slip vector b is perpendicular to the edge dislocation line L— L. (b) The atom configuration round an
edge dislocation in a simple cubic crystal.

Dislocations control plastic strain, since if a dislocation moves across its slip plane, then it
makes the material above the plane slide one atomic spacing relative to that below. Figure 6.14
shows how this happens. At the top is a perfect crystal. In the central row, a shear stress 1 is
acting parallel to the slip planes, and this drives an edge dislocation in from the left; it sweeps
through the crystal and exits on the right. Note that no individual atom moves very far as the
dislocation moves — the bonds round the dislocation are stretched to and fro to allow the
pattern of misfitting atoms to move along the slip plane. By the end of the process, the upper
part has slipped relative to the lower part by a slip step b, known as the Burger’s vector. The
result is the shear strain v shown at the bottom. Note that in this configuration, the shear stress
is perpendicular to the edge dislocation, which moves in the direction of the stress, and the
resulting slip step b is in the direction of the shear stress.



Figure 6.14 An initially perfect crystal is shown at (a). A shear stress t drives the passage of a
dislocation across the slip plane, shown in the sequence (b), (c), and (d), and shears the upper part of the
crystal over the lower part by the slip vector b, leading at (e) to a shear strain v.

There is another way to make a dislocation in a crystal. After making the cut in
Figure 6.13(a), the upper part of the crystal can be displaced parallel to the edge of the cut
rather than normal to it, as in Figure 6.15(a). That too creates a dislocation, but one with a
different configuration of misfitting atoms along its line — more like a corkscrew — and for this
reason, it is called a screw dislocation. We don’t need to try and visualise the details of
its structure; it is enough to know that its properties are similar to those of an edge dislocation,
with the following distinction: the driving shear stress is now parallel to the screw dislocation,
which sweeps sideways through the crystal, again moving normal to itself, but the slip step b
remains in the direction of applied shear stress. In fact, dislocations also form curves as they
move over a slip plane, in which case they are called mixed dislocations, meaning that they are
made up of little steps of edge and screw. The ‘pure’ edge and screw configurations are then
found at two positions on the dislocation at 90° to one another — as shown in Figure 6.15(b).
Once we’ve seen all this, it is easiest to forget about where the atoms are and just to think of
dislocations as flexible line defects gliding over the slip planes under the action of an applied
shear stress. It doesn’t matter whether the dislocation is edge, screw or mixed: it always moves
perpendicular to itself, and every part of it produces the same slip vector b in the direction of
the shear stress — the dislocation line is just the boundary on the plane up to which point which
a fixed displacement b has occurred.
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Figure 6.15 (a) A screw dislocation, with the slip vector b parallel to the dislocation line S—S; (b) a
curved, mixed dislocation, connecting a pure edge to a pure screw dislocation.

The dislocation is key to understanding why metals have a strength that is so far below their
ideal strength: it is far easier to move a dislocation through a crystal, stretching and remaking
bonds only locally along its line as it moves, than it is to simultaneously break all the bonds in
the plane before remaking them. It is like moving a heavy carpet by pushing a fold across it
rather than sliding the whole thing at one go. In real crystals, it is easier to make and move
dislocations on some planes than on others. The preferred planes are called slip planes, and
the preferred directions of slip in these planes are called slip directions. We have seen these
previously in the close-packed hexagonal, face-centred cubic (FCC) and body-centred cubic
structure unit cells of Figure 4.30 — dislocations prefer planes and directions that are close-
packed, or nearly so.

Single slip steps are tiny — one dislocation produces a displacement of about 1071% m.
But if large numbers of dislocations traverse a crystal, moving on many different planes,
the shape of a material changes at the macroscopic length scale. Figure 6.16 shows just
two dislocations traversing a sample loaded in tension, and then another two on a different
pair of slip planes. The slip steps (here very exaggerated) cause the sample to get a bit
thinner and longer. Repeating this millions of times on many planes gives the large plastic
extensions observed in practice. Since none of this changes the average atomic spacing,
the volume remains unchanged. So this is how materials deform plastically at stresses well
below the ideal strength — but note the crucial advantages: the material remains fully
intact without any loss of strength as its shape changes significantly. This ductility is
essential for safe design — we can live with a bit of unintended strain, but not with
everything being brittle — and it also enables us to shape components from lumps of metal
in the solid state.



Figure 6.16 Dislocation motion leads to strain but conserves volume.

Why does a shear stress make a dislocation move? A shear stress is needed to move dis-
locations because crystals resist their motion with a friction-like resistance f per unit length —
we will examine its origins in a moment. But for yielding to take place, the shear stress must
overcome the resistance f.

Imagine that one dislocation moves right across a slip plane, traveling the distance L;, as in
Figure 6.17. In doing so, it shifts the upper half of the crystal by a distance b relative to the
lower half. The shear stress T acts on an area L{L,, giving a shear force F; = 1L{L; on the
surface of the block. If the displacement parallel to the block is b, the force does work

W =1LiL;b (6.13)
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Figure 6.17 The force on a dislocation. (a) perspective view; (b) plan view of slip plane.



This work is done against the resistance force f per unit length, or f L on the length L,
and it does so over a displacement L; (because the dislocation line moves this far against f),
giving a total work against f of fL1L>. Equating this to the work W done by the applied
stress T gives

th=f (6.14)

This result holds for any dislocation — edge, screw or mixed. So, provided the shear stress t
exceeds the value f/b, it will make dislocations move and cause the crystal to shear.

Line tension The atoms near the ‘core’ of a dislocation are displaced trom their proper
positions, as shown by green atoms back in Figure 6.12(c), and thus they have higher potential
energy. To keep the potential energy of the crystal as low as possible, the dislocation tries to be
as short as possible — it behaves as if it had a line tension, T, like an elastic band. The tension
can be calculated but it needs advanced elasticity theory to do it (the books listed under
‘Further Reading’ give the analysis). We just need the answer. It is that the line tension T, an
energy per unit length (just as a surface tension 1s an energy per unit area), 1s

1
T = E(;b"‘ (6.15)

where G is the shear modulus (since dislocations are associated with local lattice straining in
shear), and b is the magnitude of the Burger’s vector. Recall that for metals, G scales with
Young’s modulus E, with G = 3/8 E (Chapter 4). The line tension has an important bearing
on the way in which dislocations interact with obstacles, as we shall see in a moment. At first, it
is perhaps surprising that we explain plastic deformation via dislocation motion, which turns
out to depend on an elastic property — the shear modulus, G. But it derives from the fact that
dislocations strain the lattice elastically by small (elastic) changes in the atomic spacing. This
local elastic distortion enables the dislocations to move large distances, leading to large plastic
strains.

The lattice resistance Where does the resistance to slip, f, come from? There are several
contributions. Consider first the lattice resistance, f;: the intrinsic resistance of the crystal
structure to plastic shear. Plastic shear, as we have seen, involves the motion of dislocations.
Pure metals are soft because the non-localised metallic bond does little to obstruct dislocation
motion, whereas ceramics are hard because their more localised covalent and ionic bonds
(which must be stretched and reformed when the lattice is sheared) lock the dislocations in
place. When the lattice resistance is high, as in ceramics, further hardening is superfluous — the
problem becomes that of suppressing fracture. On the other hand, when the lattice resistance f;
is low, as in metals, the material needs to be strengthened by introducing obstacles to slip. This
is done by adding alloying elements to give solid solution bardening (f<), and using precipitates
or dispersed particles to give precipitation hardening (fpp), while other dislocations give what
is called work hardening (f,p), and polycrystals also have grain boundary hardening (fgp).
These techniques for manipulating strength are central to alloy design. We look at them more
closely in the next section.



6.5 Manipulating strength

Strengthening metals: dislocation pinning The way to make crystalline materials stronger is
to make it harder for dislocations to move. As we have seen, dislocations move in a pure crystal
when the force th per unit length exceeds the lattice resistance f;. There is little we can do to
change this — it is an intrinsic property like the modulus E. Other strengthening mechanisms
add to it, and here there is scope for manipulation. Figure 6.18 shows views of a slip plane
containing obstacles from the perspective of an advancing dislocation; each strengthening
mechanism presents a different obstacle course. In the perfect lattice shown in (a), the only
resistance is the intrinsic strength of the crystal; solution hardening, shown in (b), introduces
atom-size obstacles to motion; precipitation hardening, shown in (c), presents larger obstacles;
and in work hardening, shown in (d), the slip plane becomes stepped and threaded with ‘“forest’

dislocations.

(a) Perfect lattice, resistance f; (b) Solution hardening, resistance fgg

Solute atoms

Forest dislocation
Precipitate particle (with slip step)

(c) Precipitate hardening, resistance fopt (d) Work hardening, resistance fyh

Figure 6.18 A ‘dislocation-eye’ view of the slip plane across which it must move.

Figure 6.19(a) shows what happens when dislocations encounter obstacles, which act as
pinning points. From equation (6.14), the force on the dislocation between two pinning points
of spacing I is F = tb .. From the figure, there is one obstacle for each length I of dislocation,
so the force on each obstacle is also F = th1.. To keep the dislocation moving, an increase in the
shear stress is needed to bow out the dislocation through the gap. The bowing angle 0 and
applied shear stress T increase until the force F can overcome the pinning force p that the
obstacle can apply on the dislocation. Figsure 6.19(b) and (c) show two ways in which dis-
locations escape from pinning points: ‘weak’ obstacles are passed when the bowing angle 0 lies
between 0° and 90°; for ‘strong’ obstacles, the bowing angle reaches the limiting value



0 = 90°, and the dislocation escapes by other means — the arms of the dislocations link up and
the dislocation advances, but leaving a dislocation loop around the obstacle (Figure 6.19(c)). A
helpful way to think about dislocation pinning is to recall that dislocations have a ‘line tension’
trying to make the dislocation as short as possible. As the dislocation bows out, the line tension
‘pulls’ against the obstacle, with the maximum pull being exerted when 0 = 90°.
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Figure 6.19 Dislocation pinning: (a) force on dislocation between pinning points; (b, ¢) dislocation
bowing and escape from weak and strong obstacles, respectively.

In both weak and strong cases in Figure 6.19, the dislocation escapes when F = p. Hence,
the additional contribution to the shear stress t needed to overcome the pinning points is

4

AT_E

(6.16)

Dislocation pinning is an elastic effect, locally distorting the atoms around the dislocation.
As a result, the pinning force p, for each type of obstacle in a given material, scales with the
energy per unit length (or line tension), of the dislocation, Gb*/2 (equation (6.15)). Combining
this with equation (6.16), the shear stress t needed to force the dislocation through a field of
obstacles therefore has the form

Gb
L

T=1q

(6.17)

where @ 1s a dimensionless constant characterizing the obstacle strength. Take a close look at
this equation: G and & are material constants, so in order to manipulate the strength, the
parameters that we can control are: o (the obstacle strength) and L (the obstacle spacing).
Armed with equation (6.17), we can now explain strengthening mechanisms.

Solid solution hardening Solid solution hardening is strengthening by alloying with other
elements that disperse atomically into the host lattice (Figure 6.20(a)). They are added when
the alloy is molten and are then trapped in the solid lattice as it solidifies. Adding zinc to copper
makes the alloy brass — copper dissolves up to 30% zinc. The zinc atoms replace copper atoms
to form a random substitutional solid solution. The zinc atoms are bigger than those of copper,
and, in squeezing into the copper lattice, they distort it. This ‘roughens’ the slip plane, so to



speak, making it harder for dislocations to move — they are pinned by the solute atoms and
bow out, thereby adding an additional resistance f to dislocation motion. The figure illus-
trates that the concentration of solute, ¢, expressed as an atom fraction within a given plane, is
on average:

where L is the spacing of obstacles in the slip plane, and b is the atom size. Thus,
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Figure 6.20 (a) Solid solution hardening. (b) Precipitation or dispersion hardening. (c) Forest hard-
ening (work hardening). (d) Grain boundary hardening.

Plugging this into equation (6.17) relates the concentration of the solid solution to the
additional shear stress 14 required to move the dislocation:

T = aGe/2. (6.18)

So 14 increases as the square root of the solute concentration. Brass, bronze and stainless
steels, and many other metallic alloys, derive their strength in this way. They differ only in the



extent to which the solute distorts the crystal, described by the constant . The bowing angle 0
for solute is small — much less than 90° — so solute provides weak pinning.

Dispersion and precipitate strengthening A more effective way to impede dislocations is to
disperse small, strong particles in their path. One way to make such a microstructure is to mix
small solid particles of a high melting point compound into a liquid metal and to cast it to
shape, trapping the particles in place — it is the way that metal—matrix composites such as
Al—-SiC are made. But in practice, these particles are rather far apart, so an alternative route is
used to give the best outcomes — this is to form the particles i situ by a precipitation process,
controlled by heat treatment. Solute atoms often form solid solutions more easily at high
temperature than low. So if a solute is first dissolved in a metal at high temperature, and the
alloy is cooled, the solute precipitates out as tiny crystals of compounds embedded in the host
lattice — much as salt will crystallize from a saturated solution when it is cooled. An alloy of
aluminium containing 4 % copper, for instance, precipitates very small, closely spaced particles
of the hard compound CuAlz. Copper alloyed with a little beryllium, similarly treated, gives
precipitates of the compound CuBe. And most steels are strengthened by carbide precipitates
obtained in this way. In practical heat treatment, the particle spacing is kept as small as
possible by first quenching to room temperature and then reheating to form the precipitates —
this is discussed in more depth in Guided Learning Unit 2.

Figure 6.20(b) shows how particles obstruct dislocation motion. In this case, the particles
are ‘strong’ obstacles, and the dislocation bows out to 6 = 90°, escaping as shown in
Figure 6.19(c), leaving a loop of dislocation wrapped round the particle. In this semi-circular
configuration, the dislocation of line tension T = 1/2 Gb” is applying the biggest force it can on
each obstacle, equal to 2T, so this is the maximum pinning force p. From equations (6.15) and
(6.16), the strength contribution from precipitates is therefore

2T Gb
Tppt = L L

(6.19)

Comparison with equation (6.17) shows that the maximum value of the constant « is
therefore 1. Precipitation hardening is the most effective way to increase strength:
precipitation-hardened aluminium alloys can be 15 times stronger than pure aluminium.

Work hardening The rising part of the stress—strain curve of Figure 6.1 is known as work
hardening: the plastic deformation causes dislocations to accumulate. The dislocation density,
pd, is defined as the length of dislocation line per unit volume (m/m?). Even in an annealed soft
metal, the dislocation density is around 10" m/m?, meaning that a 1-cm cube (the size of a
cube of sugar) contains about 10 km of dislocation line. When metals are deformed, dislo-
cations multiply, causing their density to grow to as much as 10" m/m?® or more — 100 million
km per cubic centimetre! The reason that the yield stress rises is because a moving dislocation
now finds that its slip plane is penetrated by a ‘forest’ of intersecting dislocations with a
steadily decreasing average spacing L = pg"? (since pg is a number per unit area).
Figure 6.20(c) shows the idea schematically. As a moving dislocation advances, it bows out
between pinning points at dislocation intersections — a relatively weak obstacle (o < 1). As the
pinning point gives way, material above the slip plane slips relative to that below and creates a
little step called a jog in each forest dislocation. These jogs have potential energy — they are
tiny segments of dislocation of length & — and this is the source of the pinning force p, with



the result that p again scales with Gb*/2. Assembling these results into equation (6.17) gives
the work-hardening contribution to the shear stress:

Tuh = fx%b = aGb,/py (6.20)

The greater the density of dislocations, the smaller the spacing between them, and so the
greater their contribution to T,.

All metals work harden. It can be a nuisance: if you want to roll thin sheet, work hardening
quickly raises the yield strength so much that you have to stop and anneal the metal (that is,
heat it up to remove the accumulated dislocations) before you can go on — a trick known to
blacksmiths for centuries. But it is also useful: it is a potent strengthening method, particularly
for alloys that cannot be heat-treated to give precipitation hardening.

Grain boundary bardening Grain boundary hardening is a little different to the other
mechanisms. Almost all metals are polycrystalline, made up of tiny, randomly oriented grains,
meeting at grain boundaries like those of Figure 6.12(d). The grain size, D, is typically
10—100 pm. These boundaries obstruct dislocation motion, as shown in Figure 6.20(d).
Dislocations in Grain 1 can’tjust slide into the next one (Grain 2) because the slip planes don’t
line up. Instead, new dislocations have to nucleate in Grain 2 with combined slip vectors that
match the displacement caused by dislocations in Grain 1. The mechanism is as follows:
dislocations “pile up’ at the boundary, creating the stress needed in the next grain to nucleate
the matching dislocations. The number of dislocations in a pile-up scales with the size of the
grain, and the bigger the pile-up, the lower the extra shear stress needed to enable slip to
continue into the next grain. This gives another contribution to the shear stress, 74, that is
found to scale as D2, giving

Ry
D

where k, is called the Hall-Petch constant after the scientists who first measured it. For normal
grain sizes, Tgp is small and not a significant source of strength, but for materials that are
microcrystalline (D < 1 pm) or nanocrystalline (DD approaching 1 nm), it becomes significant.
Controlling the grain size is routine in conventional processing — in the initial casting of a
liquid to make a solid shape, and then by deformation and heat treatments that lead to
‘recrystallisation” in the solid — more on this in Chapter 19. More exotic processing is needed
to produce really fine grain sizes — rapid cooling from the melt, electroplating, vapor depo-
sition, laser surface treatment, or compaction of nanoscale particles. These are difficult to
make and not easy to keep fine-grained — the energy per unit area associated with grain
boundaries means that, given a lictle thermal energy, the grains grow.

T (6.21)

Relationship between dislocation strength and vield strength To a first approximation the
strengthening mechanisms add up, giving a dislocation shear yield strength, t,, of

Ty = T+ Tos + Tppr + T + Tgp (6.22)

Strong materials either have a high intrinsic strength, 7; (like diamond), or they rely on the
superposition of solid solution strengthening tg, precipitation Ty, and work hardening 1,



(like high-tensile steels). Nanocrystalline solids exploit, in addition, the contribution of 14, But
before we can use this information, one problem remains: we have calculated the shear yield
strength of one crystal, loaded in shear parallel to a slip plane. What we want is the yield
strength of a polycrystalline material in tension. To link them, there are two simple steps.

First, when a remote shear stress is applied to an aggregate of crystals, some crystals will
have their slip planes oriented favourably with respect to the shear stress; others will not. This
randomness of orientation means that the shear stress applied to a polycrystal that is needed to
make all the crystals yield is higher than 1, by a factor of about 1.5 (called the Taylor factor,
after the same G.I. Taylor who postulated the dislocation mechanism, with Orowan). This
remote shear stress is referred to as the vield strength in shear, k — it is the shear stress that
would cause a tube to yield in pure torsion, for instance.

Second, yield strength is measured in uniaxial tension, so how does this axial stress produce
the shear stress & that leads to yield of the polycrystal? The answer is that a uniform tensile
stress @ creates shear stress on all planes that lie at an angle to the tensile axis. Figure 6.21
shows a tensile force F acting on a rod of cross-section A. An inclined plane is shown with the
normal to the plane at an angle 6 to the loading direction. It carries components of force Fsinf)
and Fcos0, parallel and perpendicular to the plane. The area of this plane is A/cosf, so the
shear stress parallel to the plane is

F sinf)

T= m = o sinb cost

where 6 = F/A is the tensile stress. The variation of 7 is plotted against 0 in the figure — the
maximum shear stress is found on planes at an angle of 45°, when t = &/2. The yield strength
in shear k is therefore equal to 6,/2, where G, is the tensile yield stress.

Tensile
stress ¢

Area A

Force F

T =asinBcos

Figure 6.21 The variation of stress with angle of the reference axes. A tensile stress ¢ gives a
maximum shear stress T = ¢/2 on a plane at 45° to the tensile axis.

Combining these two factors, the tensile stress to cause yielding of a polycrystalline sample is
approximately three times the shear strength of a single crystal:

oy = 2k=31,

As a result, the superposition of strengthening mechanisms in equation (6.22) applies
equally to the yield strength, o,.



Strength and ductility of alloys Of all the properties that materials scientists and engineers
have sought to manipulate, the strength of metals and alloys is probably the most explored. It
is easy to see why: Table 6.1 gives a small selection of the applications of metals and their
alloys — their importance in engineering design is clearly enormous. The hardening mecha-
nisms are often used in combination. This is illustrated graphically for copper alloys in
Figure 6.22. Good things, however, have to be paid for. Here the payment for increased
strength is, almost always, loss of ducrility, so the elongation g7 is reduced. The material is
stronger, but it cannot be deformed as much without fracture. This general trend is evident in
Figure 6.23, which shows the nominal stress—strain curves for a selection of engineering
alloys. Chapter 19 and Guided Learning Unit 2 will explore the practicalities of manipulating
the strength and ductility of alloys in the context of processing.

Table 6.1
mechanisms used

Metal alloys with typical applications, indicating the strengthening

Solution Precipitation Work

Alloy Typical uses hardening  hardening hardening
Pure Al Kitchen foil [
Pure Cu Wire e
Cast Al, Mg Automotive parts el -
Bronze (Cu—Sn), Marine components e I [

Brass (Cu—Zn)
Non-heat-treatable Ships, cans, structures i i

wrought Al
Heat-treatable Aircraft, structures %4 e %4

wrought Al
Low-carbon steels Car bodies, structures, Lo Lo

ships, cans

Low-alloy steels Automotive parts, tools e 74
Stainless steels Pressure vessels el - e
Cast Ni alloys Jet engine turbines el el

Symbols: » 11, Routinely used; », Sometimes used.
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Figure 6.22 Sstrengthening and ductility (elongation to fracture) for copper alloys. The hardening
mechanisms are frequently combined, but in general, the greater the strength, the lower the ductility.
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Figure 6.23 Nominal stress—strain curves for a selection of engineering alloys. Stronger alloys tend
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Strengthening polymers In non-crystalline solids, the dislocation is not a helpful concept. We
think instead of some unit step of the flow process: the relative slippage of two segments of a
polymer chain, or the shear of a small molecular cluster in a glass network. Their strength has
the same origin as that underlying the latrice resistance: if the unit step involves breaking strong
bonds (as in an inorganic glass), the materials will be strong and brittle, as ceramics are. If it
only involves the rupture of weak bonds (the van der Waals bonds in polymers, for example), it
will have low strength. Polymers, too, must therefore be strengthened by impeding the slippage
of segments of their molecular chains. This is achieved by blending, by drawing, by cross-
linking and by reinforcement with particles, fibres or fabrics — again, we manipulate the
microstructure-sensitive property of strength by a combination of composition and processing
(see Chapter 19 for more details).

A blend is a mixture of two polymers, stirred together in a sort of industrial food mixer. The
strength and modulus of a blend are just the average of those of the components, weighted by
volume fraction (a rule of mixtures again). If one of these is a low molecular weight hydro-
carbon, it acts as a plasticiser, reducing the modulus and giving the blend a leather-like
flexibility.

Drawing is the deliberate use of the molecule-aligning effect of stretching, like that sketched
in Figure 6.11(a), to greatly increase stiffness and strength in the direction of stretch. Fishing
line is drawn nylon, mylar film is a polyester with molecules aligned in the plane of the film,
and geotextiles, used to restrain earth banks, are made from drawn polypropylene.

Cross-linking, sketched in Figures 4.36 and 4.37, creates strong bonds between molecules
that were previously linked by weak van der Waals forces. Vulcanized rubber is rubber that
has been cross-linked, and the superior strength of epoxies derives from cross-linking.

Reinforcement is possible with particles of cheap fillers — sand, talc or wood dust. Far more
effective is reinforcement with fibres — usually glass or carbon — either continuous or chopped,
as explained in Chapter 4.

6.6 Summary and conclusions

Load-bearing structures require materials with reliable, reproducible strength. There is more
than one measure of strength. Elastic design requires that no part of the structure suffers plastic
deformation, and this means that the stresses in it must nowhere exceed the vyield strength,
oy, of ductile materials or the elastic limit of those that are not ductile. Plastic design and
deformation processing, by contrast, require some or all parts of the structure to deform
plastically, either to absorb energy or to enable the shape to be changed. Then two further
properties become relevant: the ductility, ef, and the tensile strength, o, which are the
maximum strain and the maximum stress the material can tolerate before fracture. The tensile
strength is generally larger than the yield strength because of work hardening.

Charts plotting strength, like those plotting modulus, show that material families occupy
different areas of material property space, depending on the strengthening mechanisms on
which they rely. Strength for merals is a particularly microstructure-sensitive property. Crystal
defects — particularly dislocations — are central to the understanding of alloy hardening. It is
the motion of dislocations that gives plastic flow in crystalline solids, giving them unexpectedly
low strengths. When strength is needed, it has to be provided by the strengthening mechanisms
that impede dislocation motion.

First among these is the lattice resistance — the intrinsic resistance of the crystal to dislo-
cation motion. Others can be deliberately introduced by alloying and heat treatment. Solid
solution hardening, dispersion and precipitation hardening, work hardening and grain
boundary hardening add to the lattice resistance. The strongest materials utilise more than one
mechanism.

Non-crystalline solids — particularly polymers — deform in a less organised way by the
tangled polymer chains sliding and sometimes aligning with the direction of deformation. This
leads to cold drawing with substantial plastic strain and, at lower temperatures, to crazing or
shear banding. The stress required to do this is significant, giving polymers useful intrinsic
strength. This can be enhanced by blending, cross-linking and reinforcement with particles or
fibres to give the engineering polymers we use today.
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